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Abstract. Variance-based sensitivity analysis provides a quantitative measure of how uncertainty in a model
input contributes to uncertainty in the model output. Such sensitivity analyses arise in a wide
variety of applications and are typically computed using Monte Carlo estimation, but the many
samples required for Monte Carlo to be sufficiently accurate can make these analyses intractable
when the model is expensive. This work presents a multifidelity approach for estimating sensitivity
indices that leverages cheaper low-fidelity models to reduce the cost of sensitivity analysis while
retaining accuracy guarantees via recourse to the original, expensive model. This paper develops
new multifidelity estimators for variance and for the Sobol’ main and total effect sensitivity indices.
We discuss strategies for dividing limited computational resources among models and specify a
recommended strategy. Results are presented for the Ishigami function and a convection-diffusion-
reaction model that demonstrate up to 10× speedups for fixed convergence levels. For the problems
tested, the multifidelity approach allows inputs to be definitively ranked in importance when Monte
Carlo alone fails to do so.

Key words. multifidelity, Monte Carlo, global sensitivity analysis

AMS subject classifications. 62P30, 65C05

DOI. 10.1137/17M1151006

1. Introduction. Sensitivity analysis plays a central role in modeling and simulation to
support decision making, providing a rigorous basis on which to characterize how input un-
certainty contributes to output uncertainty. This allows identification of the most significant
sources of input uncertainty as well as identification of uncertain inputs whose variation con-
tributes minimally to output variability. Such sensitivity analyses arise in a wide variety of
applications—for example, for models with uncertain inputs of high dimension, it is often
necessary to reduce the input dimension in order to make tractable the tasks of policy op-
timization, robust design optimization, and reduced-order modeling. Variance-based global
sensitivity analysis quantifies the relative effect of input uncertainties on the output uncer-
tainty via the calculation of sensitivity indices, enabling the prioritization of inputs with larger
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influence on the output (e.g., by fixing relatively unimportant inputs). Estimates of these
sensitivity indices are typically obtained via Monte Carlo integration, which often requires
many model evaluations to obtain accurate sensitivity estimates. This work presents a mul-
tifidelity formulation—leveraging approximate models to accelerate convergence—for Monte
Carlo estimation of sensitivity indices. In particular, we develop and analyze new multifidelity
estimators for variance and for the Sobol’ main and total effect sensitivities.

Sensitivity analysis plays an important role in the development and analysis of numerical
models; see [20] for a comprehensive review. In addition to the classical local approach,
entailing deterministic calculation of partial derivatives, a multitude of global approaches
exist, which seek to characterize how the overall input uncertainty affects the uncertainty of
the model output. These include screening methods [30], correlation ratios [16, 24, 25, 46],
variance-based methods [11, 18, 36, 40, 45, 50], entropy-based methods [28], and moment-
independent methods [3, 4, 8, 41]. Our interest is in the Sobol’ variance-based sensitivity
indices [50], which attribute portions of output variance to the influence of individual inputs
and their interactions and have been used in a variety of applications [1, 7, 14, 34, 47].

Sobol’ sensitivity indices are typically estimated via Monte Carlo methods, using “fixing
methods” which estimate sensitivity indices by holding one or more inputs constant while
varying the others. Rather than using an inner and outer Monte Carlo loop to do so, Saltelli
et al. propose a method that allows computation of all sensitivity indices using a single
loop [44]. Saltelli’s method is commonly used in application, but the number of function
evaluations required per Monte Carlo sample scales linearly with the number of uncertain input
parameters. This, combined with the sublinear convergence rate of the root mean-squared
error (RMSE) of Monte Carlo estimators, means that computation of Sobol’ sensitivities
quickly becomes computationally prohibitive when the model is expensive and the dimension
of the input is high. To address this, several authors have proposed estimators with improved
precision, including [22, 29, 35]. These estimators have reduced variance relative to those
initially proposed by Sobol’, although some of them are biased. To achieve further acceleration,
other previous work [1, 2, 19, 49] has achieved speedups by replacing the expensive model
with cheaper low-fidelity models (sometimes referred to as metamodels or surrogates). One
drawback of these approaches is that estimation based on the surrogate model introduces bias
relative to the high-fidelity model, and procedures for error estimation exist only in limited
settings [15, 23, 51]. We develop a multifidelity approach which combines the high-fidelity
model with low-fidelity models, resulting in computational speedups and retaining accuracy.

Multifidelity formulations have in recent years been shown to provide significant compu-
tational gains in Monte Carlo estimation for uncertainty propagation and for optimization
under uncertainty [39]. For uncertainty propagation, multifidelity formulations use surrogate
models to reduce the cost of Monte Carlo estimators. The multilevel Monte Carlo method
employs a hierarchy of coarse grids and exploits the known relationships between error and
cost at each grid level [13] and has been used to accelerate the convergence of variance esti-
mation [2]. In stochastic collocation, the outputs of a low-fidelity model are corrected with
a discrepancy model that accounts for the difference between the high- and the low-fidelity
model [12]. Multifidelity stochastic collocation approaches have been shown to have bounded
error and fast convergence [31, 52]. The multifidelity Monte Carlo (MFMC) method [32, 38]
accelerates the estimation of model statistics by using general surrogate models as control
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MULTIFIDELITY GLOBAL SENSITIVITY ANALYSIS 685

variates. In the particular case of optimization under uncertainty, the control variate can
be formed using the high-fidelity model’s autocorrelation across the design space—i.e., using
model evaluations from previous optimization iterates at nearby design points as a so-called
information reuse control variate [33].

Here, we build on the MFMC method [38] and present new multifidelity estimators for
the variance and main effect sensitivity indices. Multifidelity formulations which target esti-
mation of Sobol’ indices have been presented in [15, 26, 27, 37]. The work in [15] considers a
setting where, in addition to having random inputs, the model itself is stochastic. We do not
consider that setting here. In [27], the Sobol’ indices are sampled from a Gaussian process
which approximates a high-fidelity computer code. In this approach, lower-fidelity models
can be introduced via a cokriging model, thus increasing the quality of the Gaussian process
approximation without incurring additional evaluations of the expensive high-fidelity model.
In [37], the Sobol’ indices are obtained from a polynomial chaos expansion derived from a
low-fidelity model with a correction polynomial chaos expansion derived from the difference
between the low- and the high-fidelity model at some inputs. In both [27, 37], the Sobol’
indices are obtained for a surrogate model, and the multifidelity formulation serves to effi-
ciently increase the quality of the surrogate employed. This means that the result will be
biased relative to the original high-fidelity model. In contrast, our approach samples directly
from the high-fidelity model to ensure that our estimates are unbiased. Our approach is most
closely related to the control variate formulation of [26], which uses the first-order terms of
the analysis-of-variance (ANOVA) decomposition as the control variate. Our framework is
also based on control variates but does not restrict the type or number of surrogate models
used. Additionally, the work in this paper presents a strategy for distributing work among
the available models given a limited computational budget.

Section 2 introduces the Sobol’ variance-based sensitivity indices and Monte Carlo estima-
tion procedure. Section 3 introduces our multifidelity formulations for variance and sensitivity
index estimation, presents their accuracy guarantees, and discusses model management strate-
gies. Results are presented for an analytical example in section 4 and for a numerical example
in section 5. Conclusions are presented in section 6.

2. Setting. In this section, we introduce Sobol’ global sensitivity analysis. Subsection 2.1
presents the underlying mathematical theory and defines the Sobol’ main and total effect
sensitivity indices. Subsection 2.2 introduces the corresponding Monte Carlo estimators.

2.1. Variance-based global sensitivity analysis. Consider a model f : Z → Y that maps
a d-dimensional input z ∈ Z ⊂ Rd to a scalar output y ∈ Y ⊂ R of our system of interest.
The input domain Z = Z1 × · · · × Zd is the product of the domains Z1, . . . ,Zd ⊂ R. Let
(Ω,F ,P) be a probability space with sample space Ω, σ-algebra F , and probability measure P,
and let Z : Ω→ Z be a random vector Z = (Z(1), . . . , Z(d))T with independent components
Z(i) : Ω→ Zi for i = 1, . . . , d. Because the components of Z are independent, the probability
density function µ(z) is the product of its marginals µ(z) = µ1(z(1))µ2(z(2)) · · ·µd(z(d)). We
now consider Z as an uncertain input to model f and f(Z) as the uncertain output. If f
is square-integrable with respect to µ, then the mean E[f(Z)] =

∫
f(z) µ(dz) and variance

Var[f(Z)] =
∫

(f(z)− E[f(Z)])2 µ(dz) of f are finite, and f(z) may be expressed as the sum
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of functions of subsets of its inputs [17],

f(z) = f0 +
d∑
i=1

fi(z(i)) +
∑

1≤i<j≤d
fi,j(z(i), z(j)) + · · ·+ f1,2,...,d(z) =

∑
u⊆I

fu(z(u)) ,(1)

with I = {1, . . . , d}, z(u) = {z(i) : i ∈ u}, and the component functions fu :
⊗

i∈uZi → Y
for u ⊆ I. This expression is unique if we enforce the following orthogonality condition:∫

fu(z(u)) µj(dz(j)) = 0 ∀j ∈ u,∀u ⊆ I.(2)

The decomposition given by (1) satisfying (2) is known as the ANOVA high-dimensional
model representation (ANOVA HDMR) because the orthogonality ensures f0 = E[f(Z)] and
E[fu(Z)] = 0 for u ⊆ I, u 6= ∅, which allows the variance V = σ2 = Var[f(Z)] to then be
decomposed as [50]

Var[f(Z)] =

∫
f2(Z) µ(dz)− f2

0

=

d∑
i=1

Var[fi(Z(i))] +
∑

1≤i<j≤d
Var[fi,j(Z(i), Z(j))] + · · ·+ Var[f1,2,...,d(Z)].

Sobol’ defined the sensitivity indices su = Var[fu(Z(u))]/V for u ⊆ I [50]. Of particular
interest are the Sobol’ indices for subsets u ⊆ I with cardinality |u| = 1 , which are the
portions of the output variance that can be attributed to the influence of a single input alone,
denoted

Vj = Varµj [fj(Z(j))].(3)

We are also interested in the total variance contributed by the input Z(j), denoted

Tj =
∑
{u:j∈u}

Varµu [fu(Z(u))].(4)

This allows us to define the Sobol’ main and total effect sensitivity indices for input j as the
fraction of variance contributed by Z(j) alone and by the sum of contributions influenced by
Z(j), respectively.

Definition 2.1. The Sobol’ main effect sensitivity index for input j is given by

sj ≡
Vj
V

=
Varµj [fj(Z(j))]

Var[f(Z)]
, j = 1, . . . , d .(5)

Definition 2.2. The Sobol’ total effect sensitivity index for input j is given by

stj ≡
Tj
V

=

∑
{u:j∈u}Varµu [fu(Z(u))]

Var[f(Z)]
=

Eµj̄ [Varµj [f(Z)|Z(j̄)]]

Var[f(Z)]
,(6)

where j̄ denotes the set of all inputs excluding the jth input, i.e., j̄ = I \ {j}.
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MULTIFIDELITY GLOBAL SENSITIVITY ANALYSIS 687

2.2. Monte Carlo estimation of variance and sensitivity indices.
Variance estimation. Let {z1, . . . , zn} denote n ∈ N independent realizations of the input

Z. The sample mean and variance are given by

Ê =
1

n

n∑
i=1

f(zi) and V̂ =
1

n− 1

n∑
i=1

(f(zi)− Ê)2,(7)

respectively. The variance estimator has expected value E[V̂ ] = Var[f(Z)] and variance
Var[V̂ ] = 1

n(δ− n−3
n−1σ

4), where δ = E[(f(Z)−E[f(Z)])4] is the fourth central moment of f [9].
Sensitivity index estimation. The sensitivity indices in Definitions 2.1 and 2.2 are typically

estimated via Monte Carlo integration, using “fixing methods” to estimate Vj and Tj . These
methods use a second set of n independent realizations of Z, denoted {z′1, . . . , z′n}. Define

y
(j)
i = (z′i(1), . . . , z′i(j − 1), zi(j), z

′
i(j + 1), . . . , z′i(d)).(8)

The estimator for Vj (resp., Tj) is the empirical covariance of the data set of f(y
(j)
i ) and f(zi)

(resp., f(z′i)) pairs, and ŝj and ŝtj are obtained by normalizing by V̂ given by (7). The main
effect Sobol’ estimator is given by [50]

(9) V̂j,sobol =
1

n

n∑
i=1

f(zi)f
(
y

(j)
i

)
− Ê2,

with Ê given by (7). To estimate main effect sensitivities in d inputs using (9), we require
(d + 1) function evaluations per Monte Carlo sample, i.e., a total of n × (d + 1) evaluations
of f .

Variants on the Sobol’ estimator exist, including the Saltelli estimator [43], which modifies
the Sobol’ estimator (9) by dividing the sum by (n − 1) rather than n, and the work by
Janon et al. [22], which shows that replacing Ê with the alternative sample mean estimator

Ẽ = 1
2n

∑n
i=1(f(zi) + f(y

(j)
i )) lowers the variance of the sj estimator in the asymptotic limit.

The bias of these estimators is of order O(1/n). In [36], Owen introduces a bias-corrected
version of the Janon estimator, given by

V̂j,owen =
2n

2n− 1

 1

n

n∑
i=1

f(zi)f
(
y

(j)
i

)
−
(
Ê + Ê′

2

)2

+
V̂ + V̂ ′

4n

 ,(10)

where Ê, Ê′ and V̂ , V̂ ′ are the sample means and variances, respectively, estimated using
z1, . . . , zn and z′1, . . . , z

′
n, respectively.

To estimate Tj , the estimator introduced by Homma and Saltelli [18] is given by

T̂j,homma = V̂ −
(

1

n− 1

n∑
i=1

f(z′i)f
(
y

(j)
i

)
− Ê2

)
.(11)

This estimator has an O(1/n) bias. Owen suggests an alternative estimator,

T̂j,owen =
1

2n

n∑
i=1

(
f(z′i)− f

(
y

(j)
i

))2
,(12)

which is an unbiased estimator of Tj [36].
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688 E. QIAN, B. PEHERSTORFER, D. O’MALLEY, V. V. VESSELINOV, AND K. WILLCOX

Although the Saltelli estimators are the most widely cited in the literature, the unbiased
alternatives are better suited to the multifidelity theory we develop in section 3. Given
the popularity of the Saltelli estimators, however, we will present results for multifidelity
estimators based both on the Saltelli estimators as well as on their unbiased alternatives.

3. Multifidelity global sensitivity analysis approach. We now consider the multifidelity
setting where we have K models: In addition to our high-fidelity model f , which we will
hence denote f (1), we also have K − 1 surrogate models f (k) for k = 2, . . . ,K. In contrast
to multilevel methods, the surrogates f (k) are not limited to hierarchical discretizations but
may include projection-based reduced models, support vector machines, data-fit interpolation
and regression, and simplified-physics models. This section introduces multifidelity estimators
that leverage all available models to provide efficient estimators for the variance and the Sobol’
main and total effect indices.

3.1. MFMC variance estimation. Let m = [m1, . . . ,mK ] ∈ NK be a vector with m1 > 0

and ml ≥ mk for l > k. We draw mK realizations of Z, denoted z1, . . . , zmK ∈ Z. Let V̂
(k)
n

denote the unbiased Monte Carlo sample variance of Var[f (k)(Z)] evaluated using the first n
realizations of z, given by (7). We can now introduce our multifidelity variance estimator.

Proposition 3.1. The multifidelity variance estimator given by

V̂mf = V̂ (1)
m1

+
K∑
k=2

αk

(
V̂ (k)
mk
− V̂ (k)

mk−1

)
(13)

is an unbiased estimator of Var[f (1)(Z)]. In (13), α2, . . . , αK are control variate coefficients
which will be determined by the model management strategy (see subsection 3.3).

Proof. It follows from linearity of expectation that E[V̂mf ] = E[V̂
(1)
m1 +

∑K
k=2 αk(V̂

(k)
mk −

V̂
(k)
mk−1)] = E[V̂

(1)
m1 ] +

∑K
k=2 αk(E[V̂

(k)
mk ] − E[V̂

(k)
mk−1 ]). Since E[V̂

(k)
n ] = Var[f (k)(Z)] for n ≥

2, E[V̂
(k)
mk ] − E[V̂

(k)
mk−1 ] = Var[f (k)(Z)] − Var[f (k)(Z)] = 0 for k = 1, . . . ,K. E[V̂mf(Z)] =

Var[f (1)(Z)] follows.

Note that V̂
(k)
mk reuses mk−1 function evaluations used to compute V̂

(k)
mk−1 . We now prove a

lemma that will help us assess the quality of the MFMC variance estimator.

Lemma 3.2. Let V̂
(k)
n (Z), n ≤ mK denote the Monte Carlo variance estimator computed

with model f (k) at the first n input realizations in the set {zi}i∈N,1≤i≤mK
. Without loss of

generality, let m ≥ n. Then the covariance of two estimators V̂
(k)
m (Z) and V̂

(l)
n (Z) is given as

follows for 1 ≤ k, l ≤ K:

Cov[V̂ (k)
m (Z), V̂ (l)

n (Z)] =

{
1
m(qk,lτkτl + 2

m−1ρ
2
k,lσ

2
kσ

2
l ) if k 6= l

1
m(δk − m−3

m−1σ
4
k) if k = l,

(14)

where ρk,l = Cov[f (k)(Z),f (l)(Z)]
σkσl

, the Pearson product-moment correlation coefficient between

f (k)(Z) and f (l)(Z); σk is the standard deviation of f (k)(Z); δk is the fourth moment of
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MULTIFIDELITY GLOBAL SENSITIVITY ANALYSIS 689

f (k)(Z); τk is the standard deviation of g(k)(Z) = (f (k)(Z) − E[f (k)(Z)])2; and

qk,l = Cov[g(k)(Z),g(l)(Z)]
τkτl

.

Proof. Using kβ = f (k)(zβ) and lγ = f (l)(zγ) as shorthand, note that

Cov[V̂ (k)
m (Z), V̂ (l)

n (Z)] =
1

4m(m− 1)n(n− 1)

m∑
a=1

m∑
b=1

n∑
c=1

n∑
d=1

Cov[(ka − kb)2, (lc − ld)2].

Let χabcd = Cov[(ka−kb)2, (lc− ld)2]. If {a, b}∩{c, d} = ∅ or if a = b or c = d, then χabcd = 0.
Otherwise, if {a, b} = {c, d}, then χabcd = 2qk,lτkτl + 4ρ2

k,lσ
2
kσ

2
l . There are 2n(n − 1) such

terms. Otherwise, when |{a, b}∩{c, d}| = 1, χabcd = qk,lτkτl. There are 4n(n−1)(m−2) such
terms, so

Cov[V̂ (k)
m (Z), V̂ (l)

n (Z)] =
2n(n− 1)(2qk,lτkτl + 4ρ2k,lσ

2
kσ

2
l ) + 4n(n− 1)(m− 2)qk,lτkτl

4m(m− 1)n(n− 1)

=
1

m

(
qk,lτkτl +

2

m− 1
ρ2k,lσ

2
kσ

2
l

)
.(15)

When k = l, note that (15) can be rewritten as 1
m(qk,lτkτl + ρ2

k,lσ
2
kσ

2
l −

(m−3)
m−1 ρ

2
k,lσ

2
kσ

2
l ), ρk,k =

qk,k = 1, and τ2
k + σ4

k = δk.

We can now make a statement about the quality of the MFMC estimator.

Theorem 3.3. The variance of the MFMC variance estimator (13) is given by

Var[V̂mf(Z)] =
1

m1

(
δ1 −

m1 − 3

m1 − 1
σ4
1

)
+

K∑
k=2

α2
k

(
1

mk−1

(
δk −

mk−1 − 3

mk−1 − 1
σ4
k

)
− 1

mk

(
δk −

mk − 3

mk − 1
σ4
k

))

+ 2

K∑
k=2

αk

(
1

mk

(
q1kτ1τk +

2

mk − 1
ρ21kσ

2
1σ

2
k

)
− 1

mk−1

(
q1kτ1τk +

2

mk−1 − 1
ρ21kσ

2
1σ

2
k

))
.

(16)

Proof. The variance of a sum of random variables is the sum of their covariances:

Var[V̂mf(Z)] = Var[V̂ (1)
m1

] +

K∑
k=2

α2
k

(
Var[V̂ (k)

mk
] + Var[V̂ (k)

mk−1
]
)

+ 2

K∑
k=2

αk

(
Cov[V̂ (1)

m1
, V̂ (k)

mk
]− Cov[V̂ (1)

m1
, V̂ (k)

mk−1
]
)

+ 2

K∑
k=2

αk

K∑
j=k+1

αj

(
Cov[V̂ (k)

mk
, V̂ (j)

mj
]− Cov[V̂ (k)

mk
, V̂ (j)

mj−1
]
)

(])

− 2

K∑
k=2

αk

K∑
j=k+1

αj

(
Cov[V̂ (k)

mk−1
, V̂ (j)

mj
]− Cov[V̂ (k)

mk−1
, V̂ (j)

mj−1
]
)

([)

− 2

K∑
k=2

α2
kCov[V̂ (k)

mk
, V̂ (k)

mk−1
].

Using the covariances from Lemma 3.2, since m1 ≤ · · · ≤ mK , the covariance terms in ] and
[ will cancel, and Theorem 3.3 follows.
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3.2. Multifidelity sensitivity index estimation. We draw a second set of mK realizations

of Z, denoted z′1, . . . , z
′
mK
∈ Z. Let y

(j)
i be defined as in subsection 2.2; i.e., y

(j)
i is the ith

realization of this second set, z′i, whose jth component has been replaced by the jth component

of zi, the ith input realization in the original set. For each j, the set {y(j)
i : i = 1, . . . ,mK} is

used to estimate the sensitivity index corresponding to the jth input variable.

Let V̂
(k)
j,n and T̂

(k)
j,n denote the estimators of Vj and Tj given by (10) and (12), respectively,

evaluated using model f (k) at the first n pairs (z, y(j)). We now introduce our multifidelity
sensitivity index estimators.

Theorem 3.4. Using the Owen estimators for V̂
(k)
j,n and T̂

(k)
j,n given by (10) and (12), the

multifidelity estimators for Vj and Tj given by

V̂j,mf = V̂
(1)
j,m1

+

K∑
k=2

αk

(
V̂

(k)
j,mk
− V̂ (k)

j,mk−1

)
(17)

and

T̂j,mf = T̂
(1)
j,m1

+
K∑
k=2

αk

(
T̂

(k)
j,mk
− T̂ (k)

j,mk−1

)
(18)

are unbiased estimators of Vj and Tj, where α2, . . . , αK are control variate coefficients.

Since (10) and (12) are unbiased [36], the proof is analogous to that of Proposition 3.1. We
can then evaluate ŝj,mf = V̂j,mf/V̂mf and ŝtj,mf = T̂j,mf/V̂mf . These ratios of estimators are

biased estimators for the sensitivity indices sj and stj . However, since V̂j,mf , T̂j,mf , and V̂mf are
all unbiased estimators, our sensitivity index estimator is consistent with the best practices
in Monte Carlo Sobol’ index estimation [36, 43].

We note that the Saltelli estimators could also be used within (17) and (18) to create
a “Saltelli-based” multifidelity estimator. Given the popularity of the Saltelli estimators, we
present results for both the Owen-based and the Saltelli-based formulations in sections 4 and 5.

However, since the expectation of the multifidelity estimator is the expectation of V̂
(1)
j,m1

(resp.,

T̂
(1)
j,m1

), the O(1/n) bias of the Saltelli estimators will be preserved in a Saltelli-based multi-
fidelity formulation and may in fact be exacerbated by the fact that m1 is ideally a small
number.

3.3. Model management. Let wk, k = 1, . . . ,K denote the time it takes to evaluate f (k)

once, and let p ∈ R+ be our computational budget. We are interested in determining the
coefficients αi and the numbers of model evaluations m so as to efficiently use the computa-
tional time available to us. In [38], analytical αk and mk assignments that minimize the MSE
of the MFMC mean estimate given a fixed computational budget are presented. This result
is restated in Theorem 3.5.

Theorem 3.5. If the K models f (1), . . . , f (K) satisfy |ρ1,1| > · · · > |ρ1,K | and have costs
satisfying

wk−1

wk
>
ρ2

1,k−1 − ρ2
1,k

ρ2
1,k − ρ2

1,k+1

,
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for k = 2, . . . ,K, and the components of r∗ = [r∗1, . . . , r
∗
K ]T are given by

r∗k =

√
w1(ρ2

1,k − ρ2
1,k+1)

wk(1− ρ2
1,2)

,

then, given a maximum computational budget p, the assignments α∗k =
ρ1,kσ1

σk
and m∗1 = p

wT r∗
,

m∗k = m∗1r
∗
k for k = 2, . . . ,K minimize the MSE of the multifidelity mean estimator given by

ÊMF = Ê(1)
m1

+

K∑
k=2

αk

(
Ê(k)
mk
− Ê(k)

mk−1

)
,(19)

where Ê
(k)
mk is the sample mean computed using model k and the first mk samples in the

multifidelity approach.

For variance estimation, we formulate an optimization problem to minimize the MSE of the
MFMC variance estimate:

min
α2,...,αK ,m1,...,mK

Var[V̂mf ](20a)

s.t. 0 < m1 ≤ m2 ≤ · · · ≤ mK and
K∑
k=1

wkmk ≤ p.(20b)

Solving the nonlinear optimization problem (20) yields optimal αi and mi assignments. In
practice, the model statistics (ρ1,k, σk, δk, q1,k, τk) which enter into the objective function (16)
are unknown and must be estimated, making (20) an optimization under uncertainty. One
way to treat this is to estimate these model statistics in a pilot run with a small number
of samples. However, the resultant model allocation may be sensitive to variation in these
estimates since the objective function (20a) has fourth-order dependencies on these statistics.
When estimates for Sobol’ indices are also desired, in principle a similar optimization problem
could be formulated, but the difficulties resulting from unknown model statistics are com-
pounded both by the fact that statistics would need to be estimated for individual terms of
the ANOVA decomposition (1) and by the fact that the optimization becomes multiobjective.
Finding a different optimal allocation for each sensitivity index is likely to be sensitive to
statistic estimates and therefore impractical.

In contrast, the Theorem 3.5 allocation depends only on ρ1,k and σk, and the dependencies
are at most second-order. Additionally, the work [38] has demonstrated that this allocation
is insensitive to estimates of unknown model statistics. In application, mean estimates are
often desired in addition to variance and sensitivity estimates. It is thus both more practi-
cal and more robust to use the same mean-optimal Theorem 3.5 allocation to estimate the
variance and all sensitivity indices. Because each Monte Carlo sample for sensitivity index
estimation requires (d + 2) function evaluations (of which two evaluations are independent
and may be used for mean and variance estimation), we use Theorem 3.5 with an effective
budget peff = p/(d+ 2). This effective budget is then distributed across the available models,
and the same set of samples is used to estimate the mean, variance, and sensitivity indices.
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We will show in section 4 that the reduction in mean-squared error (MSE) achieved by using
this heuristic allocation is comparable to that obtained by solving (20). Our recommenda-
tion for practice is therefore to use the Theorem 3.5 heuristic allocation for the estimation of
variance and sensitivity indices.

Remark. We have noted that our proposed framework can accommodate surrogate models
of any type. For some models, such as polynomial chaos expansions and Gaussian processes,
the variances Vj (5) and Tj (6) can be analytically determined. If such a model were the
Kth (lowest-fidelity) model, we could take advantage of this by using the analytical values

for V̂
(K)
mK , V̂

(K)
j,mK

, and T̂
(K)
j,mK

while still sampling the model for the estimates V̂
(K)
mK−1 , V̂

(K)
j,mK−1

,

and T̂
(K)
j,mK−1

. This would free some portion of the budget to allow additional higher-fidelity
evaluations.

4. Analytical example. We first demonstrate our method on an analytical example for
which model statistics are known. This allows us to validate the theory developed in subsec-
tion 3.1 and to compare the two suggested model management approaches for multifidelity
variance estimation and sensitivity analysis.

4.1. Ishigami function and models. The Ishigami function was first introduced in [21]
and has been frequently used to test methods for sensitivity analysis and uncertainty quan-
tification [18, 42, 48]. The function is given by

f(Z) = sinZ1 + a sin2 Z2 + bZ4
3 sinZ1, Zi ∼ U(−π, π)(21)

and has ANOVA HDMR decomposition f(Z) = f0 + f1(Z1) + f2(Z2) + f13(Z1, Z3) with

f0 = a/2, f1(Z1) =

(
1 + b

π4

5

)
sinZ1,

f2(Z2) = a sin2 Z2 − a/2, and f13(Z1, Z3) = b sinZ1

(
Z4

3 −
π4

5

)
.

The variance is Var[f(Z)] = 1
2 + a2

8 + π4b
5 + π8b2

18 , and the component variances are V1 =
1
2(1 + bπ

4

5 )2, V2 = a2

8 , V13 = π8b2( 1
18 − 1

50). We set the constants a = 5 and b = 0.1 as
in [1, 42], yielding Var[f(Z)] ≈ 10.845 and sensitivities given in Table 1.

To investigate the performance of our proposed multifidelity estimation approach, we treat
the Ishigami function (21) as the high-fidelity model and use the correlated functions given in
Table 2 as low-fidelity models. To apply our model management strategy, we assign artificial
computational costs wk to each of these functions, so that our model hierarchy satisfies the
assumptions of Theorem 3.5. In this case, the exact correlation coefficients and standard
deviations are known. The models, weights, and model statistics are tabulated in Table 2.

Table 1
Main and total effect sensitivity indices for Ishigami function (21) with constants a = 5, b = 0.1.

Z1 Z2 Z3

Main effect smi 0.401 0.288 0
Total effect sti 0.712 0.288 0.311
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Table 2
Model functions, statistics, and weights used for numerical tests on the Ishigami function, a = 5, b = 0.1.

Model µk σk ρ1k τk q1k δk wk

f (1) = sinZ1 + a sin2 Z2 + bZ4
3 sinZ1 2.5 3.29 1 22.2 1 492 1

f (2) = sinZ1 + 0.95a sin2 Z2 + bZ4
3 sinZ1 2.375 3.25 0.9997 19.1 0.9997 475 0.05

f (3) = sinZ1 + 0.6a sin2 Z2 + 9bZ2
3 sinZ1 1.5 3.53 0.9465 23.0 0.9442 528 0.001

4.2. Results for Ishigami function. We use the models in Table 2 in our multifidelity
approach to estimate the mean, variance, and sensitivity indices of the Ishigami function
(f (1)) using computational budgets ranging from 200 to 20000. Multifidelity estimates are
computed using two approaches to model management: a heuristic multifidelity approach
which uses the Theorem 3.5 allocation and effective budget peff = p/(d+ 2) and the variance-
optimal approach obtained by numerically solving the optimization problem (20) using peff .

We compare the two multifidelity approaches to each other as well as to vanilla Monte
Carlo estimation for a fixed computational cost. The mk and αk assignments yielded by these
two approaches are tabulated in Table 3 with the analytically predicted estimator MSE. The
number of function evaluations allocated to each model is very similar in both multifidelity
approaches, and the resultant reduction in variance is of similar magnitude, so our recom-
mendation to use the mean-optimal allocation given by Theorem 3.5 is justified. We thus
present only results for the mean-optimal model management approach in Figure 1. For com-
putational budgets of 200, 2000, and 20000, 100 replicates of the estimators are computed,
and the replicate sample variance is evaluated. The dashed lines in Figures 1 show the MSE
predicted by our analysis (see (16)). We note good agreement between the predicted MSE
and the replicate sample variance.

Our multifidelity approach has the same convergence rate as Monte Carlo, and the MSE
of the multifidelity variance estimator is approximately 50 times lower than that of the Monte
Carlo estimator with the same cost. For a fixed convergence level, this translates to a 50×
speedup relative to Monte Carlo for variance estimation. Thus, by assigning the lower-fidelity
models most of the work, we are able to achieve a variance estimator MSE of approximately
0.1 with a computational budget of 200 compared to the budget of 10000 that would be
required to achieve the same level of convergence using Monte Carlo.

Table 3
Number of samples per model and weights for a computational budget of p = 200, peff = 40. For variance

and mean estimation, the number of function evaluations per model is 2mk because two of the d+ 2 evaluations
per sample needed for sensitivity estimation are independent. Note the similarity of the multifidelity allocations
optimized for mean and variance estimation and the small difference in the resultant variance estimator MSE.

Monte Carlo MF mean-optimal MF variance-optimal
mk mk αk mk αk

f (1) 20 7 1 8 1

f (2) – 461 1.013 447 1.015

f (3) – 9589 0.8825 9070 0.9455

MSE 4.71 0.080 0.078
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Figure 1. Convergence of multifidelity variance estimates. One hundred estimator replicates are computed
at p = 200, 2000, 20000. The multifidelity approaches optimized for mean and variance estimation perform
essentially identically, so only the mean-optimal approach is shown (see Table 3).
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Figure 2. Convergence comparison of multifidelity vs. Monte Carlo sensitivity index estimators for the
first parameter of the Ishigami function. One hundred replicates are computed with computational budgets
p = 200, 2000, 20000, and the replicate sample MSE is shown. Main and total effect sensitivities are shown on
the left and right, respectively.

Convergence of the sensitivity estimators in just the first parameter is shown in Figure 2.
In this plot, we can see that the multifidelity approach is able to reduce the estimator MSE
by an order of magnitude, corresponding to speedups of just under a factor of 10. For this
example, the performance of the Saltelli and Owen estimators is similar. Figures 3 and 4
show the results of Monte Carlo and multifidelity global sensitivity analysis. Box plots for
100 replicates are shown, and estimators using both the Saltelli and the Owen estimators for
the index numerators are shown. We note that the Owen total index estimator converges on
small sensitivity indices faster than the the Saltelli estimator. In all cases, the multifidelity
estimator has a reduced variance relative to its Monte Carlo counterpart.
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Figure 3. Comparison of multifidelity vs. Monte Carlo estimates of main effect sensitivities for the Ishigami
function (21) with computational budgets p = 200, 2000, 20000. Box plots are of 100 estimator replicates. Left
and right plots use the Saltelli and Owen estimators, respectively. The multifidelity estimators achieve desired
accuracy faster than the MC estimators, allowing definitive ranking of inputs with p = 2000, while Monte Carlo
barely achieves this at p = 20000.
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Figure 4. Comparison of multifidelity vs. Monte Carlo estimates of total effect sensitivities for the Ishigami
function (21) with computational budgets p = 200, 2000, 20000. Box plots are of 100 estimator replicates. Left
and right plots use the Saltelli and Owen estimators, respectively. Note that the Owen estimators outperform
the Saltelli estimators on small sensitivity indices.
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5. Numerical results. We now demonstrate our method on a 2D hydrogen combustion
model with five parameters, detailed in [5] and summarized in subsection 5.1. The models
used for the multifidelity approach are described in subsection 5.2, and results from numerical
experiments are presented and discussed in subsection 5.3.

5.1. Convection-diffusion-reaction (CDR) problem. We consider a domain Ω ⊂ R2 with
boundary Γ which assumes a premixed flame at constant, uniform pressure with constant,
divergence-free velocity field and equal, uniform molecular diffusivities for all species and
temperatures. The dynamics of the system are described by a CDR equation,

∂x

∂t
= ∆x− U∇x + s(x,p) in Ω,(22)

subject to Dirichlet boundary conditions x|ΓD
= xD on the left boundary of the domain and

Neumann boundary conditions xΓN
= xN on all other boundaries (see Figure 5). We consider

the steady problem, where our output of interest is the maximum temperature in the chamber.
The thermochemical composition is given by x(p, t) = [YF , YO, YP , T ]T ∈ Rn, where YF , YO,
and YP are the mass fractions of the fuel, oxidizer, and product, respectively, and T is the
temperature. The molecular diffusivity is κ, U is the velocity field, and s is the nonlinear
reaction source term. The input parameter vector is given by p = [A,E, Ti, T0, φ], where A
and E are parameters of the Arrhenius equation; Ti and T0 are the Dirichlet temperatures on
ΓD,i and ΓD,0, respectively; and φ is the fuel:oxidizer ratio of the premixed inflow.

The reaction modeled is a one-step hydrogen combustion given by

2H2 + O2 → 2H2O,

where hydrogen is the fuel, oxygen acts as the oxidizer, and water is the product. The source
term is modeled as in [10]:

si(x,p) = νi

(
Wi

ρ

)(
ρYF
WF

)νF (ρYO
WO

)νO
A exp

(
− E

RT

)
, i = F,O, P(23)

sT (x,p) = sP (x,p)Q(24)

where A is the pre-exponential factor of the Arrhenius equation, E is the activation energy,
Wi is the molecular weight of species i, ρ is the density of the mixture, R is the universal gas

Ω

18mm

9mm

ΓN

3mm

3mmΓD,0

ΓD,iInflow

Figure 5. Schematic of reacting flow domain
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698 E. QIAN, B. PEHERSTORFER, D. O’MALLEY, V. V. VESSELINOV, AND K. WILLCOX

constant, and Q is the heat of the reaction. We allow the parameters p = [A,E, Ti, T0, φ] to
vary in the domain D = [5.5×1011, 1.5×1012]× [1.5×103, 9.5×103]× [200, 400]× [850, 1000]×
[0.5, 1.5] and assume that A and E are log-uniformly distributed in their domains, while Ti, T0,
and φ are assumed to be uniformly distributed in their domains. The velocity field is assumed
to be U = (50, 0) cm

s , and the diffusivities are κ = 2.0 cm2

s . The density is ρ = 1.39× 10−3 gr
cm3 .

The molecular weights Wi are 2.016 gr
mol , 31.9 gr

mol , and 18 gr
mol for H2, O2, and H2O, respectively,

and the heat of reaction is Q = 9800K, with universal gas constant R = 8.314472 J
mol·K .

5.2. CDR models. The high-fidelity model for the problem described in subsection 5.1 is
a finite-difference solver which discretizes the spatial domain Ω into a 73× 37 grid, resulting
in 10804 degrees of freedom (the mass fractions of each of the three chemical species as well
as the temperature at each grid point). A POD-DEIM reduced model [6] with 19 POD basis
functions and 1 DEIM basis function is used as the low-fidelity model (see [5] for details of the
model reduction approach applied to this reacting flow problem). This yields a correlation
coefficient with the full model of approximately 0.95. Statistics for these models computed
using 2.4 million samples are tabulated in Table 4.

5.3. CDR results. The models tabulated in Table 4 are used in our multifidelity ap-
proach to estimate the mean, variance, and sensitivity indices of the reacting flow problem
using computational budgets ranging from 100 to 10000 minutes. Multifidelity estimates are
computed using the mean-optimal allocation resulting from estimated model statistics and an
effective computational budget peff = p/(d+ 2), as above. For each multifidelity replicate, the
statistics ρ1,i and σi are estimated using just 10 samples, and these rough estimates are used
to compute the model allocation and weights for the multifidelity approach. We present and
discuss results for the Owen estimators, which we recommend, and compare to results for the
Saltelli estimators, which are widely used.

Figures 6 and 7 contain box plots of the estimator replicates at different computational
budgets. We note that the multifidelity estimator has a reduced variance relative to the Monte

Table 4
Model statistics for the high- and low-fidelity models for the reacting flow problem.

model µi σi ρ1i wi

High-fidelity (FD) f (1) 1406 276.1 1 1.94

Low-fidelity (POD-DEIM) f (2) 1349 356 0.95 6.2e-3

Table 5
Mean number of samples per model and weights for index estimator replicates computed with a budget

of p = 100 minutes, peff = 14.3 minutes. For each replicate, the values of mk and αk are determined from
estimates of ρk and σk arising from just 10 samples.

Monte Carlo MF mean-optimal
mk mk αk

f (1) 441 401 1

f (2) – 12811 0.667
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Figure 6. Box plots of 100 main sensitivity index estimate replicates with vanilla Monte Carlo estimates
in red and multifidelity estimates in blue. The multifidelity estimator outperforms the Monte Carlo estimator,
and the Owen estimator outperforms the Saltelli estimator.
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Figure 7. Box plots of 100 total sensitivity index estimate replicates with vanilla Monte Carlo estimates
in red and multifidelity estimates in blue. The Owen estimator significantly outperforms the Saltelli estimator.
The multifidelity method outperforms a vanilla Monte Carlo approach for all Saltelli indices but only achieves
efficiency gains relative to the Owen estimator in the st5 estimate.
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Carlo estimator, even under the uncertainty of using very rough estimates for ρ1,i and σi.
The exception to this are the Owen estimators for the small total sensitivity indices—in these
cases, the Owen Monte Carlo estimator has a slightly smaller variance than that of the Owen
multifidelity estimator. In this case, however, the true value of the sensitivity index is closer to
zero, and the estimator variances are similar in magnitude. In all cases, the Owen estimators
have smaller variances than the Saltelli estimators.

We now take a closer look at the results for main effect sensitivity indices Figure 6. We
note that with a computational budget of 100 minutes, the Owen multifidelity approach can
determine with certainty (i.e., no minimal overlap in box plot ranges) that the fifth input (φ)
has the highest main effect sensitivity index and is able to effectively differentiate between
all five sensitivity indices with a computational budget of 10000 minutes. Using standard
Monte Carlo with the Owen estimators yields a higher variance which leads to a significantly
impaired ability to rank inputs with a low computational budget. At higher computational
budgets, however, the ability to rank inputs using the Owen estimators and standard Monte
Carlo is comparable the multifidelity Owen approach. The multifidelity Saltelli estimators also
have smaller variance than their Monte Carlo counterparts, but even at each computational
budget tested, the Saltelli approaches have larger variance than their Owen counterparts, and
the Saltelli estimators are not able to effectively rank the smaller sensitivity indices even at
the highest computational budget. Convergence results for the main effect sensitivities for E
and φ are shown in Figure 8. Convergence results for the total effect sensitivity estimates are
shown in Figure 9. For the sensitivity indices close to zero, our multifidelity implementation
performs worse than the vanilla Monte Carlo method, but we achieve gains similar to those
achieved in the main effect indices for the estimate of the larger total index. This is also
evident in Figure 7, where it is also clear that the Owen estimators significantly outperform
their Saltelli counterparts. We note that larger gains can be achieved with a more accurate
low-fidelity model, even for small sensitivity indices.

We plot the running mean of the estimator replicates with the replicate standard deviations
for E and φ in Figures 10 and 11. These plots clearly show the biasedness of the Saltelli
estimators—note that the running mean approaches the asymptote from above. Finally, in
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Figure 8. Sample MSE of main sensitivity estimates using high-fidelity Monte Carlo and MFMC. Results
for one small (for E) and one large sensitivity (for φ) are shown.
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Figure 9. Sample MSE of total sensitivity estimates using high-fidelity Monte Carlo and MFMC. Results
for one small (for E) and one large (for φ) sensitivity are shown; the Owen estimators are so efficient that the
multifidelity approach does not achieve efficiency gains for small sensitivity indices.
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Figure 10. Running mean of main effect sensitivity index estimator replicates with replicate standard
deviation. The Saltelli estimator is biased, and its running mean approaches the asymptote from above, while
the Owen estimators are unbiased.

Figure 12, we show the root mean square error (RMSE) relative to the “true” sensitivity
(estimated using 2.4 million samples) for the Owen estimators. The RMSE is shown for the
high-fidelity Monte Carlo estimator, our multifidelity approach, and the low-fidelity Monte
Carlo estimator. While using the low-fidelity model leads to estimators with small variance,
the bias relative to the high-fidelity model can be the same order as the sensitivity index.
Thus, even a low-fidelity model that exhibits fairly good correlation with the high-fidelity
model may lead to incorrect estimates of sensitivity indices. This emphasizes the importance
of our rigorous multifidelity formulation.
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Figure 11. Running mean of total effect sensitivity index estimator replicates with replicate standard
deviation. The Owen total effect estimators significantly outperform the Saltelli estimators for both large and
small sensitivity indices.
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Figure 12. RMSE of Owen-based Sobol’ index estimates computed with (red) high-fidelity model only,
(blue) multifidelity approach, and (black) low-fidelity model only. RMSE is calculated relative to “truth” value
estimated using 2.4 million high-fidelity samples (corresponds to a computational budget of approximately 50
days). The multifidelity approach converges to the true value, while using the low-fidelity model alone leads to
a bias that is of the same order as the sensitivity index despite having a 0.95 correlation with the high-fidelity
model.
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6. Conclusions. We have introduced new multifidelity estimators for output variance as
well as the Sobol’ main and total effect indices. These multifidelity formulations use evalua-
tions of low-fidelity models to reduce estimator variance while using the high-fidelity to retain
accuracy guarantees consistent with current best practices in Sobol’ index estimation. Notably,
the accuracy guarantees of our formulation require the use of the unbiased Sobol’ numerator
estimators proposed by Owen rather than the more commonly used Saltelli estimators. We de-
rived an expression for the variance of our multifidelity variance estimator and formulated an
optimization problem to obtain an optimal model management strategy given limited compu-
tational resources. This optimization problem can be efficiently solved, but it is parametrized
by model statistics which in general are unknown and must be estimated. In practice, because
we often desire a mean estimate in addition to variance and sensitivity index estimates, we
recommend using the mean-optimal model management strategy (Theorem 3.5) developed
in [38] as a heuristic for variance and sensitivity estimation as well: This approach is simple
and fairly insensitive to variation in the estimates of model statistics and also performs nearly
as well as the variance-optimal allocation in the analytical example examined in section 4 and
is thus a reasonable general strategy.

The results for the analytical and numerical examples in sections 4 and 5 demonstrate
the efficacy of the proposed multifidelity framework for reducing the variance of variance and
Sobol’ index estimators. We use low-fidelity models with ≈0.95 correlation with the high-
fidelity model to demonstrate 2× to 10× variance reductions corresponding to 3× to 10×
speedups. We note that larger gains may be achieved with more highly correlated low-fidelity
models.
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